Dimensional Data Model

To understand dimensional data modeling, let’s understand some of the terms commonly used in this type of modeling:

Dimension: A category of information. For example, the time dimension.

Attribute: A unique level within a dimension. For example, Month is an attribute in the Time Dimension.

Hierarchy: The specification of levels that represents relationship between different attributes within a hierarchy.

For example, one possible hierarchy in the Time dimension is Year –> Quarter –> Month –> Day.

Fact Table:

fact table is a table that contains the measures of interest. For example, sales amount would be such a measure. This measure is stored in the fact table with the appropriate granularity. For example, it can be sales amount by store by day. In this case, the fact table would contain three columns: A date column, a store column, and a sales amount column.

Lookup Table: The lookup table provides the detailed information about the attributes. For example, the lookup table for the Quarter attribute would include a list of all of the quarters available in the data warehouse. Each row (each quarter) may have several fields, one for the unique ID that identifies the quarter, and one or more additional fields that specifies how that particular quarter is represented on a report (for example, first quarter of 2001 may be represented as “Q1 2001″ or “2001 Q1″).

dimensional model includes fact tables and lookup tables. Fact tables connect to one or more lookup tables, but fact tables do not have direct relationships to one another. Dimensions and hierarchies are represented by lookup tables. Attributes are the non-key columns in the lookup tables.

In designing data models for data warehouses / data marts, the most commonly used schema types are Star Schema and Snowflake Schema.

Star Schema:  In the star schema design, a single object (the fact table) sits in the middle and is radially connected to other surrounding objects (dimension lookup tables) like a star. A star schema can be simple or complex. A simple star consists of one fact table; a complex star can have more than one fact table.

Snowflake Schema: The snowflake schema is an extension of the star schema, where each point of the star explodes into more points. The main advantage of the snowflake schema is the improvement in query performance due to minimized disk storage requirements and joining smaller lookup tables. The main disadvantage of the snowflake schema is the additional maintenance efforts needed due to the increase number of lookup tables. Whether one uses a star or a snowflake largely depends on personal preference and business needs. Personally, I am partial to snowflakes, when there is a business case to analyze the information at that particular level.

Fact Table Granularity

Granularity

The first step in designing a fact table is to determine the granularity of the fact table. By granularity, we mean the lowest level of information that will be stored in the fact table. This constitutes two steps: Determine which dimensions will be included. Determine where along the hierarchy of each dimension the information will be kept. The determining factors usually goes back to the requirements.

Which Dimensions To Include

Determining which dimensions to include  in dimensional data modeling is usually a straightforward process, because business processes will often dictate clearly what are the relevant dimensions. For example, in an off-line retail world, the dimensions for a sales fact table are usually time, geography, and product. This list, however, is by no means a complete list for all off-line retailers. A supermarket with a Rewards Card program, where customers provide some personal information in exchange for a rewards card, and the supermarket would offer lower prices for certain items for customers who present a rewards card at checkout, will also have the ability to track the customer dimension. Whether the data warehousing system includes the customer dimension will then be a decision that needs to be made.

What Level Within Each Dimensions To Include

Determining which part of hierarchy the information is stored along each dimension is a bit more tricky. This is where user requirement (both stated and possibly future) plays a major role. In the above example, will the supermarket wanting to do analysis along at the hourly level? (i.e., looking at how certain products may sell by different hours of the day.) If so, it makes sense to use ‘hour’ as the lowest level of granularity in the time dimension. If daily analysis is sufficient, then ‘day’ can be used as the lowest level of granularity. Since the lower the level of detail, the larger the data amount in the fact table, the granularity exercise is in essence figuring out the sweet spot in the tradeoff between detailed level of analysis and data storage.

Sometimes the users will not specify certain requirements, but based on the industry knowledge, the data warehousing team may foresee that certain requirements will be forthcoming that may result in the need of additional details. In such cases, it is prudent for the data warehousing team to design the fact table such that lower-level information is included. This will avoid possibly needing to re-design the fact table in the future. On the other hand, trying to anticipate all future requirements is an impossible and hence futile exercise, and the data warehousing team needs to fight the urge of the “dumping the lowest level of detail into the data warehouse” symptom, and only includes what is practically needed. Sometimes this can be more of an art than science, and prior experience will become invaluable here.

These are some of the important  data warehousing concepts used in Dimensional Data Modeling


Comments

Leave a Reply

Your email address will not be published. Required fields are marked *